Multivariate Estimation of Rock Mass Characteristics Respect to Depth Using ANFIS Based Subtractive Clustering- Khorramabad- Polezal Freeway Tunnels

نویسندگان

  • M Sharifzadeh Faculty of Mining Eng, Mining and Metallurgy, Amirkabir University of Technology
چکیده مقاله:

Combination of Adoptive Network based Fuzzy Inference System (ANFIS) and subtractive clustering (SC) has been used for estimation of deformation modulus (Em) and rock mass strength (UCSm) considering depth of measurement. To do this, learning of the ANFIS based subtractive clustering (ANFISBSC) was performed firstly on 125 measurements of 9 variables such as rock mass strength (UCSm), deformation modulus (Em), depth, spacing, persistence, aperture, intact rock strength (UCSi), geomechanical rating (RMR) and elastic modulus (Ei). Then, at second phase, testing the trained ANFISBSC structure has been perfomed on 40 data measurements. Therefore, predictive rock mass models have been developed for 2-6 variables where model complexity influences the estimation accuracy. Results of multivariate simulation of rock mass for estimating UCSm and Em have shown that accuracy of the ANFISBSC method increases coincident with development of model from 2 variables to 6 variables. According to the results, 3-variable model of ANFISBSC method has general estimation of both UCSm and Em corresponding with 20% to 30% error while the results of multivariate analysis are successfully improved by 6-variable model with error of less than 3%. Also, dip of the fitted line on data point of measured and estimated UCSm and Em for 6-variable model approaches about 1 respect to 0.94 for 3- variable model. Therefore, it can be concluded that 6-variable model of ANFISBSC gives reasonable prediction of UCSm and Em.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Breast Cancer Risk Assessment Using adaptive neuro-fuzzy inference system (ANFIS) and Subtractive Clustering Algorithm

Introduction: The adaptive neuro-fuzzy inference system (ANFIS) is a soft computing model based on neural network precision and fuzzy decision-making advantages, which can highly facilitate diagnostic modeling. In this study we used this model in breast cancer detection. Methodology: A set of 1,508 records on cancerous and non-cancerous participant’s risk factors was used.  First,...

متن کامل

Breast Cancer Risk Assessment Using adaptive neuro-fuzzy inference system (ANFIS) and Subtractive Clustering Algorithm

Introduction: The adaptive neuro-fuzzy inference system (ANFIS) is a soft computing model based on neural network precision and fuzzy decision-making advantages, which can highly facilitate diagnostic modeling. In this study we used this model in breast cancer detection. Methodology: A set of 1,508 records on cancerous and non-cancerous participant’s risk factors was used.  First,...

متن کامل

ANFIS-Based Modeling for Photovoltaic Characteristics Estimation

Ziqiang Bi 1,2, Jieming Ma 1,2,*, Xinyu Pan 1, Jian Wang 1 and Yu Shi 1 1 School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215011, China; [email protected] (Z.B.); [email protected] (X.P.); [email protected] (J.W.); [email protected] (Y.S.) 2 Department of Computer Science and Software Engineering, Xi’an Jiaotong-Liverpool Unive...

متن کامل

Revaluation of rock mass classification using multivariate analysis and estimation of the tunnel support

RMR, Rock Mass Rating, is one of the famous rock classifications. However, RMR was proposed empirically and absolutely depends on the experience of engineer. Therefore, engineering verification is needed for RMR system itself. In this study, the factor analysis and the multiple regressions were performed in order to evaluate the validity of rating factor of RMR. Also numerical analysis was carr...

متن کامل

breast cancer risk assessment using adaptive neuro-fuzzy inference system (anfis) and subtractive clustering algorithm

introduction: the adaptive neuro-fuzzy inference system (anfis) is a soft computing model based on neural network precision and fuzzy decision-making advantages, which can highly facilitate diagnostic modeling. in this study we used this model in breast cancer detection. methodology: a set of 1,508 records on cancerous and non-cancerous participant’s risk factors was used.  first, the risk fact...

متن کامل

Capacity Drop Estimation Based on Stochastic Approach Applied to Tehran-Karaj Freeway

Existence of capacity drop phenomenon, as the difference between pre-queue and queue discharge flow rates, has been one of the controversial concepts of traffic engineering. Several researches have focused on capacity drop existence and also its estimation issues. This paper aims to estimate capacity drop based not only on a comparison between breakdown and queue discharge flow rates, but also ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 10  شماره 4

صفحات  3793- 3808

تاریخ انتشار 2017-05

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023